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PROBLEMS / SOLUTIONS / COMMENTS
Round 2 - Year 10 - Academic Year 1998-99

Gene A. Berg, Editor

1/2/10. Determine the unique pair of real numbers  that satisfy the equation

.

Solution 1 by Robert Kotredes (11/ME): The polynomial  can be written as

, and therefore has a range of . The polynomial  can be wr

ten as , and therefore has a range of . Because , the only p

ble values for each polynomial are their minimums, which occur at  and ,

respectively. So the unique pair of real numbers  is .

Solution 2 by Kim Won Jong (12/CA):Let , then

Since there is a unique pair , the discriminant  of the quadratic formula must e
zero, or

So,
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, since again, the discriminant is zero.

Substituting A into the original equation,

Therefore, the unique pair of real numbers  that satisfy the equation

is .

Solution 3 by Robert Klein (12/PA):“Completing the square” within each term we get:

Substituting  and , the equation becomes

Observing  and , we must have  and  since .

Solving  and , the unique pair of real numbers satisfyin

the equation is (-3/4, 3/2).

Solution 4 by Adam Salem (12/NY):This solution uses calculus. Let  and

. Thus . To find the extreme points of bothf andg, set

their derivatives equal to 0.  and , sof(x) has a minimum at

. Similarly,  and , sog(y) has a minimum at .

This is equivalent to  and . Multiplying the inequa

ities yields . This is notable because 28 is the number from the original equat

which means that we are simply trying to find numbers x and y that minimize . S

both f(x) and g(y) are always positive, it follows that the smallest value of  is the p

uct of their minimums. Thus the smallest value of  is produced when

4x
2

6x
9
4
---+ + 0=

x
b– b

2
4ac–±

2a
-------------------------------------- b

2a
------– 3

4
---–= = =

7
4
--- 4y

2
12y– 25+( ) 28=

4y
2

12y 9+– 0=

y
b

2a
------– 12

2 4⋅
---------- 3

2
---= = =

x y,( )

4x
2

6x 4+ +( ) 4y
2

12y– 25+( ) 28=

3
4
---–

3
2
---, 

 

4x
2

6x
9
4
---+ + 

  7
4
---+ 

  4y
2

12y– 9+( ) 16+( ) 2x
3
2
---+ 

  2 7
4
---+ 

  2y 3–( )2
16+( ) 28= =

a 2x
3
2
---+ 

  2
= b 2y 3–( )2

= a
7
4
---+ 

  b 16+( ) 28=

a 0≥ b 0≥ a 0= b 0=
7
4
--- 16⋅ 28=

a 2x
3
2
---+ 

  2
0= = b 2y 3–( )2

0= =

f x( ) 4x
2

6x 4+ +=

g y( ) 4y
2

12y– 25+= f x( ) g y( )⋅ 28=

f′ x( ) 8x 6+= f″ x( ) 8 0>=

x 0.75–= g′ y( ) 8y 12–= g″ y( ) 8 0>= y 1.5=

f x( ) f 0.75–( )≥ 1.75= g y( ) g 1.5( )≥ 16=

f x( )g y( ) 28≥
f x( ) g y( )⋅

f x( ) g y( )⋅
f x( ) g y( )⋅

x y,( ) 0.75 1.5,–( )=



tre

such

n

er

 sim-

finite

tri-

-

e a

 mid-
Editor’s Comment: This problem is based on a similar problem (E: 11418) proposed by Pe
Bãtrânetu of Galati, Romania, in Issue 7-8/1997 of theGazeta Mathematicã.

2/2/10. Prove that there are infinitely many ordered triples of positive integers  

that the greatest common divisor ofa, b, and c is 1, and the sum  is the
square of an integer.

Solution 1 by Irena Foygel (10/IL):Let x andy be relatively prime positive integers such that

(mod 2). Let , , and . Becausex andy are relatively prime andx is
not divisible by 2,a andb are relatively prime; therefore gcd(a, b, c) = 1.
Now,

Set  and observe .
Because there are an infinite number of pairs(x, y) meeting the above requirements, there are a
infinite number of triples(a, b, c) meeting the requirements.

Solution 2 by Michael Castleman (12/MA):For relatively prime integers a, b, and c, the sum

 is a square of an integer if one of the numbers equals the sum of the oth
two. We shall now prove this.

Without loosing the generality of the proof, assume that a + b = c. Replacing a + b for c and
plifying, we get:

Since  is an integer, the result is the square of an integer. Since there are an in
number of ordered triples(a, b, c) such thata, b, andc are relatively prime anda + b = c, and, for

all of those pairs,  is an integer, there exist an infinite number of ordered 
ples which meet the given criteria.

Solution 3 by Andy Large (11/TN):In order for  to be the square of an inte

ger, it must be possible to write it in the form  or . Conveniently, we hav

trinomial with squared first and third terms:  and . This means we only need the
dle term to be equivalent to 2 times the product of the said squared terms. That is
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a will be an integer under either of the conditions:

(i)  and  form, n, s integers.

Here

(ii) c and b are switched in (i) above.

Consider the triple , wherem, n, ands are positive integers.
Whenm ands are relatively prime and whens and2 are relatively prime, then GCD(a, b, c) = 1,
and this triple meets the requirements above. There are an infinite number of such triples.

Solution 4 by Jeffrey Palmer (12/NY):Integersa, b, andc have GCD = 1 if two of the members
are distinct primes.

 is the square of an integer when a
square can be completed.

The  and  terms are accounted by
the shaded areas (see diagram at right).
If

If b = 2 anda is an odd prime, then infinitely many tri-

ples can be created which meet the requirements: .

Solution 5 by George Lee (11/CA): Suppose , and rewrite the equa

tion as . Witha = 1, this reduces to .

Now let b = 1 to obtain . This is a Pell’s equation, which has infinitely many so
tions - each corresponding to an ordered triple(1, 1, c). [For a discussion of Pell’s equation see th
Editor’s comment following Solution 6.] For example,  satisfies the

equation. Some ways that successive solutions can be generated are by:
(i)   using the recursive relations  and ;

(ii) using the single recursive relation  where c1 = 2 and c2 = 12; or

(iii) using the equation .
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For this solution, we will show that the first method works by induction:

.

Sincecn+1 anddn+1 are larger thancn anddn, we can generate infinitely many solutions(c, d) =
(cn, dn). Also, 1, 1, andcn are relatively prime. Thus we can generate infinitely many correspo
ing solutions (1, 1,c).

Solution 6 by David Fithian (11/OR):We are to show that infinitely many positive integer set

(a, b, c, n) satisfy the equation  with gcd(a, b, c)= 1. Without loss of
generalization, letc = 1.    This automatically makes gcd(a, b, c)= 1, regardless of the values ofa

andb. We are left with  with . Now, set b = 1, so that

. Rearranging, we see that ; since this is a Fermat-Pell equation o

form , and sinced = 2 is prime, there are infinitely many solution pairs(a, n), and
thus the equation has infinitely many positive integral solutions with gcd(a, b, c) equal to 1.

These solutions would be(a, b, c, n) = (r, 1, 1, s), wheres/r is a certain fractional convergent of

. In particular, the first solution pairs(a, n) are (2, 3), (12, 17), (70, 99), (408, 577),... . It can 

verified thatn/a indeed converges to .

Editor’s Comments: This problem is due to Suresh T. Thaker of Bombay, India. We are grat
for his contribution.   A brief discussion of Pell’s equations is available in the solutions to Ro
1 of Year 10. Mr. Lee (Solution 5 above) presents two more methods to generate solutions
Pell’s equations which we have not included. Pell’s equations are used in Solution 6 as well.
following note, Erin Schram continues the discussion.

Solution by Pell’s Equation,summary by Erin J. Schram, longtime grader.

Several test-takers solved problem 2 by Pell’s equation. Gene Berg described Pell’s equati

the solutions to round 1, but he did not expect Pell’s equation to be of any use in this round

creativity of the students who take the USAMTS is surprising and refreshing.

Pell’s equation is the quadratic Diophantine equation of the form
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whereD andN are integer constants andx andy are integer unknowns. We start with the equati

and we pick arbitrary integers fora andb. This changes the equation to a Pell’s equation in the

variablesx andc.   Although settinga andb to arbitrary values won’t give every solution to

, the problem asked for only an infinite family of solutions, and the

solutions to the Pell’s equation are an infinite family. Besides, witha andb held constant, we can

pick them so that their greatest common divisor is 1, forcing the greatest common divisor oa, b,

andc to be 1.

For example, the most common choice wasa = 1 andb = 1. Then the equation simplifies to

which is a Pell’s equation.   This equation is almost identical to the equation from Gene Be

discussion, . Gene Berg’s use of continued fractions to solve that Pell’s equa

can be adapted to solve problem 2, since every other term from the solutions to

satisfies .

For variety, I will discuss the recursive solution to the Pell’s equation that results from settina =

1 andb = 2, the second most common choice. This gives .

Suppose we have the Pell’s equation  and one solution to it, . Furthe

more, suppose  is a solution to : note that I replaced the integerN with the

integer 1 in that equation. Then  will be a solution to

We have  and some trial and error gives us  as one solution. Fo

solution to , let’s be lazy and cut our solution to the previous equation in half,

which gives . Even though the recursion will not be built from integers, it i

possible that its results will still be integers. The result is a solution  and a re

sive relation:

Hence, we can rearrange the recursive relation to the following:
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We also have the following relations:.

The recursive relation  tells us the solutions will all be integers. Some test

ers noticed that the values forc, which are 1, 3, 8, 21, 55, 144, 377,..., are every other term fro

the Fibonacci sequence. The Fibonacci sequence, being the simplest nontrivial recursive

sequence, appears a lot in recursive relations.

3/2/10. Nine cards can be numbered using positive half-integers (1/2, 1, 3/2, 2, 5/2,...) so t
sum of the numbers on a randomly chosen pair of cards gives an integer from 2 to 12 w
same frequency of occurrence as rolling that sum on two standard dice. What are the n
on the nine cards and how often does each number appear on the cards?

Solution 1 by Megan Guichard (11/WA):With nine cards, there are9C2 = 36 possible ways to

choose two cards. As it happens, there are also  possible outcomes when two d
rolled, with the following frequencies of occurrence:

Therefore, there must be exactly one pair of cards with a sum of 2, exactly two pairs of card
a sum of 3, and so on.

Since all possible sums must be integers, the cards must be numbered either with all integ
with all odd integer multiples of 1/2. Since half-integers are specifically mentioned, it seems
good assumption that all cards are numbered with odd integer multiples of 1/2 (at least unt

Sum 2 3 4 5 6 7 8 9 10 11 12

Frequency 1 2 3 4 5 6 5 4 3 2 1

x0 c0,( ) 3 1,( )=

x1 c1,( ) 1.5 3 2.5 1 0.5 3 1.5 1×+×,×+×( ) 7 3,( )= =

x2 c2,( ) 1.5 7 2.5 3 0.5 7 1.5 3×+×,×+×( ) 18 8,( )= =

x3 c3,( ) 1.5 18 2.5 8 0.5 18 1.5 8×+×,×+×( ) 47 21,( )= =

x4 c4,( ) 1.5 47 2.5 21 0.5 47 1.5 21×+×,×+×( ) 123 55,( )= =

ci 0.5xi 1– 1.5ci 1– ,  so xi 1–+ 2ci 3ci 1––= =

xi 1.5xi 1– 2.5ci 1–+= ,  so xi 1.5 2ci 3ci 1––( ) 2.5ci 1–+ 3ci 2ci 1––= =

ci 1+ 0.5xi 1.5ci+ ,  so ci 1+ 0.5 3ci 2ci 1––( ) 1.5ci+ 3ci ci 1––= = =

ci 1+ 3ci ci 1––=

6 6⋅ 36=
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assumption is proven either true or false).

Operating under this assumption, there is only one way to get a sum of 2: 1/2 + 3/2. Thus t
must be exactly one card numbered 1/2 and exactly one numbered 3/2. Then there must b
pairs of cards with sum 3; this can be accomplished by either 1/2 + 5/2 or 3/2 + 3/2. Howev
already know there is only one card numbered 3/2, so there must be two ways to draw 1/2 
Only one card is numbered 1/2 so there must be two cards numbered 5/2.

With the four cards we now have (1/2, 3/2, 5/2, 5/2) there are only two ways to draw a pair 
cards with sum 4: 3/2 + 5/2 and 3/2 + 5/2 (there are two cards numbered 5/2). Therefore w
to add one more card that will create a sum of 4 when paired with an existing card. Howeve
new card must be greater than 5/2, because there are exactly the right number of cards les
equal to 5/2 already; thus the new card must be 7/2, which, when paired with 1/2, yields the
way to get a sum of 4.

Continuing this line of reasoning shows that the remaining four cards must be numbered 9/
11/2, and 13/2, meaning that the complete set of none cards is numbered as follows

(1/2, 3/2, 5/2, 5/2, 7/2, 9/2, 9/2, 11/2, 13/2)

With these cards, exactly one pair results in a sum of 2, exactly two pairings result in a sum
three pairs yield a sum of 4, and so on, with each sum having the same frequency as on a p
sided dice.

Editor’s comments: Erin Schram of the National Security Agency contributed this clever pro
lem.

4/2/10. As shown on the figure, squarePQRS is
inscribed in right triangleABC, whose right angle is
at C, so thatS andP are on sidesBC andCA, respec-
tively, while Q and R are on sideAB. Prove that

 and determine when equality occurs.

Solution 1 by Suzanne Armstrong (11/MO):
(i) Since

and

then  is similar to .

(ii) Let  and let .
(iii) So

 and hence  and therefore .
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(v) Now to prove that , we must show .

This is equivalent to  or  which is clear
and is further emphasized by its graph (at right).
(vi) As our last step, we determine when equality occurs. When

, then ; also,

when , all of the triangles are isosceles

.

Thus,  with equality when .

Solution 2 by Xuejing Chen (12/OK):Observe that
 and , so  is

similar to .

Thus    and .

†Since , it follows that .

So , and .

Thus .

Now, if b = c, thenb + c = 2a so we have equality. This occurs if  is isosceles.

Solution 3 by Daniel Moraseski (11/FL):

By similarity we have     and

The Arithmetic Mean - Geometric Mean inequality states  for nonnegative numbes

andt. [See † in Solution 2 above for proof.]

So

Equality is satisfied when  because this is the equality condition for the AM-GM. T

means  and it is an isosceles right triangle.

Editor’s Comments: We are most grateful to Professor Hiroshi Okumura of the Maebashi In
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tute of Technology for this excellent problem. Professor Okumura is in charge of the Japan
counterpart of the USAMTS.

Many solutions used the inequality  (for positive number n) in one form or another.

Since  we can write , so  and . If this fact was

used in a solution, full credit for the solution required proof of this fact.

5/2/10. In the figure on the right,ABCD is a
convex quadrilateral, K, L, M, and N are the
midpoints of its sides, andPQRS is the
quadrilateral formed by the intersections of
AK, BL, CM, andDN. Determine the area
of quadrilateralPQRS if the area of quadri-
lateral ABCD is 3000, and the areas of
quadrilateralsAMQP and CKSR are 513
and 388, respectively.

Solution 1 by Mary Tian (10/TX):
Notation: [P1P2...Pv] denotes the area of poly-
gon P1P2...Pv.
Connect AC. Because M, K are midpoints of
AB, CD respectively, then [ACK] = [ACD]/2,
and [CAM] = [CAB]/2.

Hence
[AMCK] =  [ACK] + [CAM]  = ( [ACD]/2 ) + ( [CAB]/2 )

= [ABCD]/2
Thus

[PQRS] =  [AMCK] - [AMQP] - [CKSR]
=  ( [ABCD]/2 ) - [AMQP] - [CKSR]
=  (3000/2) - 513 - 388
=  599.

So area of quadrilateral PQRS is 599.

Editor’s comment: We are thankful to Professor Gregory Galperin of Eastern Illinois Univers
for proposing an earlier version of this problem. His many contributions are most appreciat
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